THE REINFORCED CONCRETE COLLAR ANALYSIS

A. Design Critia

1/ Code References

- a EM 1110-2-2014
- b EM 1110-2-2100
- c EM 1110-2-2007
- e EM 1110-2-2502
- d EM 1110-2-2902
- f Concrete Pipe Design Manual, American Concrete Pipe Association
- g Design Data, Highway Live load on Concrete Pipe, American Concrete Pipe Association

2/ Loading

For 18 inch RCP(D-Load 2500) located at 5ft from the finished grade

Pipe outter diameter	$D_i =$	1.5 ft			
Pipe outter diameter	D =	2 ft			
Pipe Length	L =	12 ft			
Soil height above pipe	h =	5 ft			
Soil density	g =	140 pcf			
Pipe self weight	$w_p =$	168 lb/ft			
soil above pipe	$w_s =$	1400 lb/ft			
Full water in pipe	w _w =	110 lb/ft			
Load combination					
Load factor	LF =	2.2	(3-2, EM-1100-2-2014)		
U= LF*(Lp + Ltu + Ldu)	U =	3692 lb/ft			
U = 2.2*(168 + 1400 + 110)					
B. Shear and Moment					
Moment at collar	M =	266 k-ft			
Shear at collar	V =	44 kips			

C. Analysis of collar connection

$$eta_1 = 0.85$$
 $f'_c = 4 \text{ ksi}$
 $f_y = 60 \text{ ksi}$
 $E_s = 29000 \text{ ksi}$
 $d = 12 \text{ in}$
 $b = 48 \text{ in}$
 $A_s = 1.24 \text{ in}2$

a. Steel ratio

$$\begin{array}{ll} \rho_{act} = & As/(b*d) & \rho_{act} = & 0.00215 \\ pb = 0.85*b1*f'c/fy & \rho_b = & 0.02851 \end{array}$$

$$\rho_{act}$$
 =0.0021! < 0.25 * ρ_{b} =0.0071

=> The detailed analysises of the serviceability limit states are not required

b. Compute the flexural capacity

c. Check Shear

 $V_c = 2\sqrt{(f'c)^*}b^*d$ $\phi V_C = 1728 \text{ kips} > 44 : OK$ $\phi = 0.85$

ELEVATION

SECTION X-X

D-Load Calculations For The Proposed 18-in RCP Side Drain.

DESCRIPTION

D-Load calculation were per formed for a 18" RCP being punched through the existing retaining wall

FIGURES

All measurements in feet unless specified otherwise

Actual pipe dimensions

(considering 11.7% vertical slope noted on HDR plans CD00006)

7.0 ft 6.0 ft 5.0 ft

34.2 ft

13.8 ft

2.0 ft

2.0 ft

354.37

D-LOAD

Pipe properties

Internal pipe diameter	D _i =	1.5 ft	
pipe thickness	t =	0.25 ft	
soil unit weightt	$Y_s =$	140 pcf	
Height of fill above conduit	H =	5 ft	
Factor of safety	FS =	1.25	(Storm drains)
Loads			
Soil friction coefficient	K _u '=	0.15	(for trench condition)
Trench width	B _d =	4 ft	
Trench coefficient	C _d =	1.04	

50.0 ft

$$C_d = \frac{1-e^{-2K_u'\frac{H}{B_d}}}{2K_u'}$$

(base width of pipe +12" on each side per Flood Control District plans)

Earth load	$W_e =$	2334.91
$W_e = C_d \gamma B_d^2$		
Live load	W _I =	0
Total vertical load	W =	2334.91
Load factor		
Load factor for trench condition	L.F. =	2.7
(case 3 bedding installation)		

D-Load

$$D - load = \frac{W \times S.F.}{D_i \times L.F.}$$
 D-Load = 720.65

Rounding factor

For pipes 36" and less in diameter, round the calculated D-Load value to the next highest 250

$$D-Load_{0.01} = 750 lb$$